annolid
  • Annolid User Guide
  • Install Annolid
  • Install Detectron2 locally
  • Install Detectron2 on Google Colab
  • Optional: Install older version of Pytorch for YOLACT
  • Extract desired number of frames from a video based on optical flow
  • Display optical flow while extracting frames with –show_flow=True
  • Save all the frames as images
  • Select frames randomly by reservoir sampling
  • Extract all the key frames from a video used by the compression methods
  • Track animals and Auto labeling
  • Output CSV format
  • Config keypoint connection rules, events, and instances
  • Threshold based object segmenation
  • Convert WMV format to mp4 format using ffmpeg
  • Save the extracted frames to a user selected output directory
  • How to track multiple objects in the video?
  • How to convert coco annonation format to YOLOV5 format?
  • How to train a custom YOLOV5 model?
  • How to track objects in a video with the trained model?
  • How to convert labelme labeled dataset to COCO format?
  • How to train a YOLACT model with a custom dataset?
  • How to evaluate a video based on a trained model?
  • Convert the tracking results csv file to Glitter2 csv format
  • Convert the keypoint annotations to labelme format
annolid
  • Index

Index

A | C | T | X

A

  • annolid (module)
  • annolid.annotation (module)
  • annolid.annotation.coco2yolo (module)
  • annolid.data (module)
  • annolid.datasets (module)
  • annolid.gui (module)
  • annolid.postprocessing (module)
  • annolid.segmentation (module)
  • annolid.segmentation.yolact (module)
  • annolid.tracker (module)
  • annolid.utils (module)

C

  • create_dataset() (in module annolid.annotation.coco2yolo)

T

  • tests (module)

X

  • xywh2cxcywh() (in module annolid.annotation.coco2yolo)

© Copyright 2021, Chen Yang.

Built with Sphinx using a theme provided by Read the Docs.